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Abstract. In this paper, we join the notion of fuzzy ideal to the notion of fuzzy approximation space to define the notion
of fuzzy ideal approximation spaces. We introduce the fuzzy ideal approximation interior operator intλ� and the fuzzy ideal
approximation closure operator clλ�, and moreover, we define the fuzzy ideal approximation preinterior operator pintλ� and
the fuzzy ideal approximation preclosure operator pclλ� with respect to that fuzzy ideal defined on the fuzzy approximation
space (X, R) associated with some fuzzy set λ ∈ IX. Also, we define fuzzy separation axioms, fuzzy connectedness and fuzzy
compactness in fuzzy approximation spaces and in fuzzy ideal approximation spaces as well, and prove the implications in
between.
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1. Introduction

Pawlak ([21]) has defined the notion of rough sets
referring to uncertainty of intelligent systems. In [21],
there are more theoretical aspects of rough sets and its
applications. An extended study of fuzzy Lie Alge-
bras is found in [1]. An approximation space (X, R)
is constructed from a universe set of objects and an
equivalence relation on these objects. The bound-
ary region between the lower approximation set AR

and the upper approximation set AR of a set A in
(X, R) described these rough sets. If the lower and
the upper approximation sets are equal, then A is then
an exact subset of X and there is no roughness. Many
researchers studied the relationship between rough
sets and topological spaces in [7, 18, 24] The notion
of ideal in topological spaces was defined and stud-
ied in [13] and the notion of a fuzzy ideal was given
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in [23]. The local function of some subset in a topo-
logical space was defined and studied in [25]. Many
studies have been published based on joining an ideal
to a topological space as in [8, 9, 14–16]. Separation
axioms with respect to an ideal were given in [2], and
the notion of continuity via ideals was given in [3]
while the notion of grills on a topological space was
introduced by Choquet [6] and fuzzy grills on X was
given in [4]. The concepts of ideals and grills have
proved to be a powerful supporting as known with fil-
ters, for getting a deeper insight into further studying
some topological notions such as proximity spaces,
closure spaces, connectedness and compactness ([10,
14, 15, 22]). In [22], the authors defined and studied
a typical topology associated naturally to the exist-
ing topology and a grill on a given topological space.
Hatir and Jafari [10] defined new classes of sets and
gave a new decomposition of continuity in terms of
grills. In [20], the authors studied fuzzy soft sepa-
ration axioms and fuzzy soft connectedness in fuzzy
topological spaces in sense of Chang ([5]). In [17], the
authors introduced some concepts in fuzzy ideal topo-
logical spaces. Graded fuzzy separation axioms were
defined in [11], and by the way fuzzy approximation
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and fuzzy ideal approximation separation axioms will
be defined in Section 4. Fuzzy approximation com-
pactness and fuzzy ideal approximation compactness
will be defined in Section 5. Fuzzy lower and fuzzy
upper sets of a rough set were studied in [19].

In this paper, we joined the notion of fuzzy ideal
� with the fuzzy approximation space (X, R) asso-
ciated with a fuzzy set λ, and defined fuzzy interior
and fuzzy closure operators with respect to that fuzzy
ideal. The local function �λ(μ) of some μ ∈ IX with
respect to that fuzzy ideal was a base in defining
the related interior and closure operators. Separa-
tion axioms in fuzzy approximation spaces and in
fuzzy ideal approximation spaces were defined and
compared with examples to confirm the implications
in between. Connectedness in fuzzy approximation
spaces and in fuzzy ideal approximation spaces
were defined and compared with examples to show
the implications in between. Compactness in fuzzy
approximation spaces and in fuzzy ideal approxima-
tion spaces were defined as well. All results studied in
fuzzy ideal approximation spaces are directly proved
if we changed to the fuzzy grill approximation spaces.
The correspondence between fuzzy ideal and fuzzy
grill was insured in [16]. Fuzzy approximation conti-
nuity and fuzzy ideal approximation continuity were
introduced as well.

The motivation of Section 1 is to define the fuzzy
approximation lower and upper sets, and then to
define the fuzzy approximation interior and closure
operators on a fuzzy approximation space. Through
these fuzzy operators we defined fuzzy approx-
imation separation axioms, fuzzy approximation
connectedness and fuzzy approximation compact-
ness. A generalization of these definitions is defined
using a fuzzy ideal constructed on the fuzzy approx-
imation space.

Through the paper, let X be a set of objects, I the
closed unit interval [0, 1] and I0 = (0, 1]. IX denotes
all the fuzzy subsets of X, and λc(x) = 1 − λ(x) ∀x ∈
X, ∀λ ∈ IX. A constant fuzzy set t for all t ∈ I is
defined by t(x) = t ∀x ∈ X. Infimum and supremum
of a fuzzy set λ ∈ IX are given as: inf λ = ∧

x∈X

λ(x)

and sup λ = ∨
x∈X

λ(x). If f : X → Y is a mapping,

μ ∈ IX, ν ∈ IY , then

(f (μ))(y) =
∨

x∈f−1(y)

μ(x) ∀y ∈ Y and f−1(ν) = (ν ◦ f ).

Assume a fuzzy relation R : X × X → I

is defined so that R(x, x) = 1 ∀x ∈ X,

R(x, y) = R(y, x) ∀x, y ∈ X and R(x, y) ≥
(R(x, z) ∧ R(z, y)) ∀x, y, z ∈ X. That is, R is a
fuzzy equivalence relation on X. (X, R) is called
a fuzzy approximation space based on the fuzzy
equivalence relation R on X.

Definition 1.1. For each x ∈ X, define a fuzzy coset
[x] : X → I by:

[x](y) = R(x, y) ∀y ∈ X (1)

All elements y ∈ X with fuzzy relation value
R(x, y) > 0 are elements having a membership value
in the fuzzy coset [x], and any element y ∈ X with
R(x, y) = 0 is not included in the fuzzy coset [x].
Any fuzzy coset [x] surely include the element x ∈ X,
and consequently

∨
z∈X

[x](z) = 1 for all x ∈ X. Also,∨
z∈X

[z](y) = 1 ∀y ∈ X (i.e.
∨

z∈X

[z] = 1). Clearly, if

R(x, y) > 0, then the fuzzy cosets [x], [y] (as fuzzy
sets) are containing the same elements of X with
some non zero membership values, and moreover if
[y](z) = 0, then it must be that [x](z) = 0 whenever
R(x, y) > 0. That is, any two fuzzy cosets are either
two fuzzy sets containing the same elements ofXwith
some non zero membership values or containing com-
pletely different elements of X with some non zero
membership values. Strictly, in case of I = {0, 1} it
is a partitioning of X as usually known in the general
case.

Note that: [x] /= 0 ∀x ∈ X since there is at least
x ∈ X itself such that [x](x) = 1, while may be all ele-
ments z ∈ X are given such that [x](z) > 0 ∀z ∈ X.
The fuzzy cosets could be such that [x](x) = 1 and
[x](z) = 0 ∀z /= x, which means (X, R) is fuzzy parti-
tioned into completely disjoint fuzzy cosets. Putting
I = {0, 1} as a crisp case, we get exactly the usual
meaning of partitioning of a set X based on an ordi-
nary equivalence relation R on X.

Recall that the fuzzy difference between two fuzzy
sets was defined ([12]) as:

(λ ∧̄ μ) =
{

0 if λ ≤ μ,

λ ∧ μc otherwise.
(2)

Definition 1.2. Let λ ∈ IX and R a fuzzy equivalence
relation on X and the fuzzy cosets are defined as in
(1). Then, the fuzzy lower set λR, the fuzzy upper set
λR and the fuzzy boundary region set λB are defined
as follows:
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λR(x) = λ(x) ∧ (
∨

λc(z)>0, z /= x

[x](z))c ∀x ∈ X,

(3)

λR(x) = λ(x) ∨
∨

λ(z)>0, z /= x

[x](z) ∀x ∈ X, (4)

λB = λR ∧̄ λR =
{

0 if λR ≤ λR

λR ∧ (λR)c otherwise.
(5)

λR, λR and λB are then called fuzzy lower, fuzzy
upper and fuzzy boundary region sets associated with
the fuzzy set λ in IX and based on the fuzzy equiv-
alence relation R in the fuzzy approximation space
(X, R).

From (3) and (4), we get that λR ≤ λ ≤ λR ∀λ ∈
IX. Whenever λR be so that λR ≤ λR, we get that
λ = λR = λR and then from (5), we have λB = 0.
Otherwise, λB = λR ∧ (λR)c. The fuzzy accuracy
αR(λ) of approximation of the fuzzy set λ could
be characterized numerically by αR(λ) = inf λR

sup λR ,
where 0 ≤ αR(λ) ≤ 1. If αR(λ) = 1, then λ is crisp
with respect to R (λR = λR and λ is precise with
respect to R), and otherwise, if αR(λ) < 1, λ is rough
with respect to R (λ is vague with respect to R).

Lemma 1.1. For any fuzzy set λ ∈ IX we get easily
that:

(1) 0R = 0
R = 0 and 1R = 1

R = 1,
(2) (λ ∨ μ)R ≥ λR ∨ μR, (λ ∧ μ)R ≤ λR ∧ μR,
(3) λ ≤ μ implies that λR ≤ μR and λR ≤ μR,
(4) (λ ∨ μ)R = λR ∨ μR, (λ ∧ μ)R = λR ∧ μR,
(5) (λR)c = (λc)R and (λR)c = (λc)R

(6) (λR)R ≥ (λR)R = λR, (λR)R ≤ (λR)R = λR.

Associated with a fuzzy set λ in a fuzzy approxi-
mation space (X, R), it was defined a fuzzy interior
operator intλR : IX → IX as follows:

intλR(ν) = λR ∧ νR ∀ ν /= 1 and intλR(1) = 1. (6)

Also, it was defined a fuzzy closure operator clλR :
IX → IX as follows:

clλR(ν) = (λR)c ∨ νR ∀ ν /= 0 and clλR(0) = 0. (7)

Recall that:

clλR(νR) = clλR(ν) ∀ν ∈ IX, intλR(νR) = intλR(ν) ∀ν ∈ IX, (8)

intλR(νc) = (clλR(ν))c and clλR(νc) = (intλR(ν))c ∀ν ∈ IX. (9)

Definition 1.3. Let (X, R) be a fuzzy approximation
space associated with λ ∈ IX. Then,

(1) μ is fuzzy preopen (resp. preclosed) set iff
μ ≤ intλR(clλR(μ)) (resp. μ ≥ clλR(intλR(μ))).

(2) The fuzzy preinterior of μ, denoted by
p intλR(μ) is defined by
p intλR(μ) = ∨{ν ∈ IX : μ ≥
ν, ν is fuzzy preopen}.

(3) The fuzzy preclosure of μ, denoted by p clλR(μ)
is defined by
p clλR(μ) = ∧{ν ∈ IX : μ ≤
ν, ν is fuzzy preclosed}.

2. Fuzzy ideal approximation spaces

A subset � ⊂ IX is called a fuzzy ideal ([23]) on
X if it satisfies the following conditions:

(1) 0 ∈ �,
(2) If ν ≤ μ and μ ∈ �, then ν ∈ � for all μ, ν ∈

IX,
(3) If μ ∈ � and ν ∈ �, then (μ ∨ ν) ∈ � for all

μ, ν ∈ IX.

If �1 and �2 are fuzzy ideals on X, we have �1 is
finer than �2 (�2 is coarser than �1) if �1 ⊇ �2. The
triple (X, R, �) is called a fuzzy ideal approximation
space. Denote the trivial fuzzy ideal �◦ as a fuzzy
ideal including only 0.

Definition 2.1. Let (X, R, �) be a fuzzy ideal approx-
imation space associated with
λ ∈ IX. Then,

(1) The local fuzzy closed set �λ(μ)(R, �) of a set
μ ∈ IX is defined by:

�λ(μ)(R, �) =
∧

{ν ∈ IX : (μ∧̄ν) ∈ �, clλR(ν) = ν}.
(10)

We will write �λ(μ) or �λ(μ)(�) instead of
�λ(μ)(R, �).

(2) The local fuzzy preclosed set �
p
λ (μ)(R, �) of a

set μ ∈ IX is defined by:

�
p

λ (μ)(R, �) =
∧

{ν ∈ IX : (μ∧̄ν) ∈ �, p clλR(ν) = ν}.
(11)

We will write �
p
λ (μ) or �

p
λ (μ)(�) instead of

�
p
λ (μ)(R, �).

Corollary 2.1. Let (X, R, �◦) be a fuzzy ideal approx-
imation space, λ ∈ IX. Then, for each μ ∈ IX, we
have �λ(μ) = clλR(μ), �

p
λ (μ) = p clλR(μ).
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Proposition 2.1. Let (X, R, �) be a fuzzy ideal
approximation space associated with λ ∈ IX. Then,

(1) μ ≤ ν implies �λ(μ) ≤ �λ(ν) and �
p
λ (μ) ≤

�
p
λ (ν).

(2) If �1, �2 are fuzzy ideals on X and �1 ⊆ �2, then
�λ(μ)(�1) ≥ �λ(μ)(�2) and �

p
λ (μ)(�1) ≥

�
p
λ (μ)(�2).

(3) �
p
λ (μ) ≤ �λ(μ) = clλR(�λ(μ)) ≤ clλR(μ),

and �
p
λ (μ) = p clλR(�p

λ (μ)) ≤ p clλR(μ) ≤
clλR(μ).

(4) (�λ(�λ(μ)) ≤ clλR(�λ(μ)) = �λ(μ),
(5) �

p
λ (�p

λ (μ)) ≤ pclλR(�p
λ (μ)) = �

p
λ (μ).

(6) �λ(μ) ∨ �λ(ν) ≤ �λ(μ ∨ ν) and �λ(μ) ∧
�λ(ν) ≥ �λ(μ ∧ ν).

Proof. Obvious. �

Definition 2.2. Let (X, R, �) be a fuzzy ideal approx-
imation space associated with
λ ∈ IX. Then, for any μ ∈ IX, define the fuzzy oper-
ators
clλ�, p clλ�, intλ�, p intλ� : IX → IX as follows:

clλ�(μ) = μ ∨ �λ(μ) , p clλ�(μ) = μ ∨ �
p

λ (μ) ∀μ ∈ IX. (12)

intλ�(μ) = μ ∧ (�λ(μc))c , p intλ�(μ) = μ ∧ (�p

λ (μc))c ∀μ ∈ IX.

(13)

Now, if � = �◦, then from Corollary 2.1,
(1) clλ�(μ) = clλR(μ) = �λ(μ) and intλ�(μ) =
intλR(μ) = (�λ(μc))c ∀μ ∈ IX.

(2) p clλ�(μ) = p clλR(μ) = �
p
λ (μ) and p intλ�

(μ) = p intλR(μ) = (�p
λ (μc))c ∀μ ∈ IX.

Proposition 2.2. Let (X, R, �) be a fuzzy ideal
approximation space associated with
λ ∈ IX. Then, for any μ, ν ∈ IX, we have:

(1) intλR(μ) ≤ p intλ�(μ) ≤ intλ�(μ) ≤ μ ≤
p clλ�(μ) ≤ clλ�(μ) ≤ clλR(μ).

(2) clλ�(μc) = (intλ�(μ))c and intλ�(μc) =
(clλ�(μ))c.

(3) clλ�(μ ∨ ν) ≥ clλ�(μ) ∨ clλ�(ν), clλ�(μ ∧
ν) ≤ clλ�(μ) ∧ clλ�(ν).

(4) intλ�(μ ∨ ν) ≥ intλ�(μ) ∨ intλ�(ν), intλ�(μ ∧
ν) ≤ intλ�(μ) ∧ intλ�(ν).

(5) clλ�(clλ�(μ)) ≥ clλ�(μ) and intλ�(intλ�(μ)) ≤
intλ�(μ).

(6) If μ ≤ ν, then clλ�(μ) ≤ clλ�(ν), intλ�(μ) ≤
intλ�(ν).

(7) pclλ�(μ) ≤ pclλR(μ).

Proof. For (7): Suppose that pclλ�(μ) /≤ pclλR(μ),
and if pclλR(μ) = ν, then μ ≤ ν and ν is fuzzy pre-
closed set with pclλ�(μ) /≤ ν. But μ ≤ ν implies
that μ∧̄ν ∈ �, and thus �

p
λ (μ) ≤ ν which means that

pclλ�(μ) = μ ∨ �
p
λ (μ) ≤ μ ∧ ν ≤ ν, which is a con-

tradiction. Hence, pclλ�(μ) ≤ pclλR(μ).
(1) − (6): Clear. �

Definition 2.3. (X, R, �) be a fuzzy ideal approxima-
tion space associated with λ ∈ IX. Then,

(1) μ ∈ IX is said to be fuzzy �-open if μ ≤
intλR(�λ(μ)). The complement of fuzzy �-open
is said to be fuzzy �-closed.

(2) μ ∈ IX is called fuzzy dense in itself if μ ≤
�λ(μ).

(3) μ ∈ IX is said to be fuzzy ideal preopen if μ ≤
intλR(clλ�(μ)). The complement of fuzzy ideal
preopen is said to be fuzzy ideal preclosed.

Lemma 2.1. Let (X, R, �) be a fuzzy ideal approxi-
mation space associated with λ ∈ IX. Then,

(1) If μ ∈ IX is fuzzy �-closed, then μ ≥
�λ(intλR(μ)).

(2) If μ ∈ IX is fuzzy ideal preclosed, then μ ≥
clλR(intλ�(μ)).

Proof. For (1): Let μ be fuzzy �-closed. Then,
μc ≤ intλR(�λ(μc)) ≤ intλR (clλR (μc)) = intλR
((intλR(μ))c) = (clλR(intλR(μ)))c ≤ (�λ(intλR(μ)))c.
Therefore, �λ(intλR(μ)) ≤ μ. For (2), it is easy. �

It is clear that:

Example 2.1. Let R be a fuzzy relation on a set X =
{a, b, c, d} defined as follows.

R a b c d

a 1 1 0 0
b 1 1 0 0
c 0 0 1 0.6
d 0 0 0.6 1

Assume that λ = {0, 0, 0.5, 0.5} and a fuzzy ideal
� on X is defined as follows: ν ∈ � ⇔ ν ≤
{0.5, 0.5, 1, 1}. Then, μ = {0.3, 0.3, 1, 1} ∈ � is a
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fuzzy preopen but it is neither fuzzy ideal preopen
nor fuzzy �-open.

Example 2.2. Let R be a fuzzy relation on a set X =
{a, b, c, d, e} defined as follows.

R a b c d e

a 1 1 1 0 0
b 1 1 1 0 0
c 1 1 1 0 0
d 0 0 0 1 0.2
e 0 0 0 0.2 1

Assume that λ = {1, 1, 1, 0.8, 0.6} and a fuzzy
ideal � on X is defined by: ν ∈ � ⇔ ν ≤ 0.6. Then,
μ = {1, 1, 1, 0, 0} /∈ � is a fuzzy ideal preopen but it
is not fuzzy �-open.

Theorem 2.1. Let (X, R, �) be a fuzzy ideal approx-
imation space associated with λ ∈ IX. Then, the
following are equivalent.

(1) μ ∈ IX is fuzzy �-open.
(2) μ ∈ IX is fuzzy ideal preopen and fuzzy ideal

dense in itself.

Proof. (1) ⇒ (2): It is clear that every fuzzy �-open
set is fuzzy ideal preopen. On the other hand μ ≤
intλR(�λ(μ)) ≤ �λ(μ), which means μ is fuzzy ideal
dense in itself.

(2) ⇒ (1): By assumption, μ ≤ intλR(clλ�(μ)) =
intλR(μ ∨ �λ(μ)) = intλR(�λ(μ)), and hence μ is
fuzzy �-open. �

The following example shows that fuzzy ideal pre-
open and fuzzy ideal dense in itself are independent
concepts.

Example 2.3.

(1) In Example 2.2, we get that: For μ =
{1, 1, 1, 0, 0}, we have μ is a fuzzy ideal pre-
open set but not fuzzy ideal dense in itself.

(2) Let R be a fuzzy relation on a set X =
{a, b, c, d} defined as follows.

R a b c d

a 1 1 0 0
b 1 1 0 0
c 0 0 1 0.8
d 0 0 0.8 1

Assume that λ = {1, 1, 0.2, 0} and a fuzzy ideal
� on X is defined as follows: ν ∈ � ⇔ ν ≤ 0.2.
Then, μ = {0.6, 0.5, 0.1, 0.1} is a fuzzy ideal
dense in itself. But it is not fuzzy ideal preopen
set.

3. Separation axioms in fuzzy ideal
approximation spaces

Definition 3.1. Let (X, R, �) be a fuzzy ideal approx-
imation space associated with λ ∈ IX. Then,

(1) A fuzzy ideal approximation space (X, R, �)
(resp. a fuzzy approximation space (X, R)) is
called a fuzzy ideal-(t, s)T0 (resp. (t, s)T0) if
for everyx /= y ∈ X, there existsμ ∈ IX, t ∈ I0
with intλ�(μ)(x) ≥ t (resp. intλR(μ)(x) ≥ t) such
that μ(y) < t or there exists ν ∈ IX, s ∈ I0
with intλ�(ν)(y) ≥ s (resp. intλR(ν)(y) ≥ s) such
that ν(x) < s.

(2) A fuzzy ideal approximation space (X, R, �)
(resp. a fuzzy approximation space (X, R)) is
called a fuzzy ideal-(t, s)T1 (resp. (t, s)T1) if for
every x /= y ∈ X, there exist μ, ν ∈ IX; t, s ∈
I0 with intλ�(μ)(x) ≥ t and intλ�(ν)(y) ≥ s

(resp. intλR(μ)(x) ≥ t and intλR(ν)(y) ≥ s) such
that μ(y) < t and ν(x) < s.

(3) A fuzzy ideal approximation space (X, R, �)
(resp. a fuzzy approximation space (X, R)) is
called a fuzzy ideal-(t, s)T2 (resp. (t, s)T2) if for
every x /= y ∈ X, there exist μ, ν ∈ IX; t, s ∈
I0 with intλ�(μ)(x) ≥ t and intλ�(ν)(y) ≥ s

(resp. intλR(μ)(x) ≥ t and intλR(ν)(y) ≥ s) such
that sup(μ ∧ ν) < (t ∧ s).

Remark 3.1 From (1) in Proposition 2.2, we
have intλ�(μ) ≥ intλR(μ) ∀μ ∈ IX. Denote for fuzzy
ideal approximation (t, s)Ti separation axioms by
(t, s)FI − Ti, i = 0, 1, 2, that is,

Consider a fuzzy ideal approximation space
(X, R, �) associated with λ ∈ IX and � = {0}. Then,
the fuzzy ideal separation axioms (t, s)FI − Ti are
identical to the fuzzy separation axioms (t, s)Ti of
the fuzzy approximation space (X, R), i = 0, 1, 2.

Example 3.1. Let λ = {1, 0.8, 0}, t = s = 0.5 and R

be a fuzzy relation on a set X = {a, b, c} as shown in
the matrix:
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R a b c

a 1 0.3 0
b 0.3 1 0
c 0 0 1

Then, we get that: λR = {0.7, 0.8, 0}, λR =
{1, 0.8, 0}, λc

R = {0.3, 0.2, 1}.
Now, for the case a /= b, there exists μ =

{0.8, 0, 0.4}, and then μR = {0.7, 0, 0.4}, which
means intλR(μ) = {0.7, 0, 0}, and thus intλR(μ)(a) ≥
0.5, μ(b) < 0.5. Also, we can find ν = {0, 0.6, 0.1},
and then νR = {0, 0.6, 0.1}, which means intλR(ν) =
{0, 0.6, 0}, and thus intλR(ν)(b) ≥ 0.5, ν(a) < 0.5.

For the cases a /= c and b /= c, we can find η ∈ IX

with intλR(η)(a) ≥ 0.5 or intλR(η)(b) ≥ 0.5 such
that η(c) < 0.5, while we can not find η ∈ IX with
intλR(η)(c) ≥ 0.5. Hence, (X, R) is a fuzzy approxi-
mation (0.5, 0.5)T0-space associated with λ. (X, R)
could not be a fuzzy approximation (0.5, 0.5)T1-
space or (0.5, 0.5)T2-space. Now, any fuzzy setω will
satisfy clλR(ω) = ω ⇐⇒ ω ≥ {0.3, 0.3, 1} accord-
ing to the fuzzy cosets of R and the set λc

R.
Define a fuzzy ideal � on X so that η ∈ � ⇐⇒

η ≤ 0.7. Then, we can find three fuzzy sets η =
{0.8, 0, 0}, ξ = {0, 0.8, 0} and ζ = {0, 0, 0.8} for
which �λ(ηc) = �λ(ξc) = �λ(ζc) = {0.3, 0.3, 1},
and then intλ�(η) = η ∧ (�λ(ηc))c = {0.7, 0, 0},
intλ�(ξ) = ξ ∧ (�λ(ξc))c = {0, 0.7, 0} and
intλ�(ζ) = ζ ∧ (�λ(ζc))c = {0, 0, 0.7}. Thus, for
any x /= y, we have two fuzzy sets ρ, σ ∈ {η, ξ, ζ}
so that intλ�(σ)(x) ≥ 0.5, σ(y) < 0.5 and
intλ�(ρ)(y) ≥ 0.5, ρ(x) < 0.5. Hence, for any
choice for ρ, σ, we have sup(ρ ∧ σ) = 0 < 0.5, and
therefore (X, R, �) is a fuzzy ideal approximation
(0.5, 0.5)Ti-space, i = 0, 1, 2 while (X, R) is even
not fuzzy approximation (0.5, 0.5)T1-space.

The following example is given to show that there
is a fuzzy ideal approximation (t, s)T0-space but not
fuzzy approximation (t, s)T0-space.

Example 3.2. Let λ = {0.6, 0, 0}, t = s = 0.4 and R

be a fuzzy relation on a set X = {a, b, c} as shown in
the matrix:

R a b c

a 1 0 0
b 0 1 0
c 0 0 1

Then, we get that: λR = {0.6, 0, 0}, λc
R =

{0.4, 1, 1}. Now, for the case b /= c, we can not
find η ∈ IX with intλR(η)(b) ≥ 0.4 or intλR(η)(c) ≥

0.4. Hence, (X, R) is not fuzzy approximation
(0.4, 0.4)T0-space associated with λ. Conse-
quently, (X, R) could not be a fuzzy approximation
(0.4, 0.4)T1-space or (0.4, 0.4)T2-space.

Define a fuzzy ideal � on X so that η ∈ � ⇐⇒
η ≤ {0.6, 1, 1}. Then, there exist μ = {0.4, 0.4, 0}
and ν = {0.4, 0, 0.4} for which �λ(μc) = 0 and
�λ(νc) = 0, which implies that intλ�(μ) = μ =
{0.4, 0.4, 0} and intλ�(ν) = ν = {0.4, 0, 0.4}, and
thus intλ�(μ)(a) ≥ 0.4, μ(c) < 0.4, intλ�(μ)(b) ≥
0.4, μ(c) < 0.4 and intλ�(ν)(a) ≥ 0.4, ν(b) < 0.4.
That is, (X, R, �) is a fuzzy ideal approximation
(0.4, 0.4)T0-space but (X, R) is not fuzzy approxi-
mation (0.4, 0.4)T0-space.

If (X, R) and (Y, R∗) are fuzzy approximation
spaces associated with λ ∈ IX and μ ∈ IY , respec-
tively, then a mapping f : (X, R) → (Y, R∗) is said
to be fuzzy approximation continuous (FAC) if
intλR(f−1(η)) ≥ f−1(intμR∗ (η)) ∀η ∈ IY . It is equiv-
alent to clλR(f−1(η)) ≤ f−1(clμR∗ (η)) ∀η ∈ IY .

Now, with respect to λ ∈ IX and μ ∈ IY , if
�, �∗ are fuzzy ideals on X, Y , respectively, then
a mapping f : (X, R, �) → (Y, R∗) is called fuzzy
ideal approximation continuous (FIAC) provided that
intλ�(f−1(η)) ≥ f−1(intμR∗ (η)) ∀η ∈ IY . It is eas-
ily shown that it is equivalent to clλ�(f−1(η)) ≤
f−1(clμR∗ (η)) ∀η ∈ IY . Also, let us call f : (X, R) →
(Y, R∗) a fuzzy approximation open (FAO) pro-
vided that intμR∗ (f (ξ)) ≥ f (intλR(ξ)) ∀ξ ∈ IX,

f : (X, R) → (Y, R∗, �∗) a fuzzy ideal approxima-
tion open (FIAO) provided that intμ�(f (ξ)) ≥
f (intλR(ξ)) ∀ξ ∈ IX.

Clearly, every (FAC) (resp. (FAO)) mapping will
be (FIAC) (resp. (FIAO)) mapping as well (from (1)
in Proposition 2.2).

Theorem 3.1. Let (X, R), (Y, R∗) be fuzzy approxi-
mation spaces associated with
λ ∈ IX, μ ∈ IY , respectively, � a fuzzy ideal on
X and f : (X, R) → (Y, R∗) is an injective (FAC)
mapping with f (λ) = μ. Then, (X, R, �) is a fuzzy
ideal approximation (t, s)Ti-space if (Y, R∗) is a fuzzy
approximation (t, s)Ti-space, i = 0, 1, 2.

Proof. Since x /= y in X implies that f (x) /= f (y) in
Y , and from Y is a fuzzy approximation (t, s)T2-space,
then there exist η, ζ ∈ IY with t ≤ intμR∗ (η)(f (x)),
s ≤ intμR∗ (ζ)(f (y)) such that sup(η ∧ ζ) < (t ∧ s),
that is, t ≤ f−1(intμR∗ (η))(x), s ≤ f−1(intμR∗ (ζ))(y),
and then t ≤ f−1(intμ�(η))(x), s ≤ f−1(intμ�(ζ))(y).
Since f is (FAC), then t ≤ intλR(f−1(η))(x), s ≤
intλR(f−1(ζ))(y), and then t ≤ intλ�(f−1(η))(x), s ≤
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intλ�(f−1(ζ))(y). That is, there exist ρ = f−1(η),
ω = f−1(ζ) with t ≤ intλ�(ρ)(x), s ≤ intλ�(ω)(y) and
sup(ρ ∧ ω) < (t ∧ s). Hence, (X, R, �) is a fuzzy
ideal approximation (t, s)T2-space. Other cases are
similar. �

Theorem 3.2. Let (X, R), (Y, R∗) be fuzzy approxi-
mation spaces associated with
λ ∈ IX, μ ∈ IY , respectively, �∗ a fuzzy ideal on Y

and f : (X, R) → (Y, R∗) is a surjective (FAO) map-
ping with f−1(μ) = λ. Then, (Y, R∗, �∗) is a fuzzy
ideal (t, s)Ti-space if (X, R) is a fuzzy approximation
(t, s)Ti-space, i = 0, 1, 2.

Proof. Since f is surjective, then p /= q in Y

implies that f−1(p) /= f−1(q) in X, and from
(X, R) is a fuzzy approximation (t, s)T2-space, then
there exist ρ, ω ∈ IX with t ≤ intλR(ρ)(f−1(p)),
s ≤ intλR(ω)(f−1(q)) such that sup(ρ ∧ ω) < (t ∧ s),
and also from f is surjective, then f (intλR(ρ))(p) =
intλR(ρ)(f−1(p)) and f (intλR(ω))(q) =
intλR(ω)(f−1(q)), and thus t ≤ f (intλR(ρ))(p),
s ≤ f (intλR(ω))(q). From f is (FAO), then,
t ≤ intμR∗ (f (ρ))(p), s ≤ intμR∗ (f (ω))(q), and thus
t ≤ intμ�(f (ρ))(p), s ≤ intμ�(f (ω))(q). That is,
there exist η = f (ρ), ζ = f (ω) with t ≤ intμ�(η)(p),
s ≤ intμ�(ζ)(q) and sup(η ∧ ζ) < (t ∧ s). Hence,
(Y, R∗, �∗) is a fuzzy ideal approximation (t, s)T2-
space. The other cases for (t, s)T0-spaces and
(t, s)T1-spaces are similar. �

4. Connected fuzzy ideal approximation
spaces

Definition 4.1. Let (X, R) be a fuzzy approximation
space associated with λ ∈ IX. Then,

(1) The fuzzy sets μ, ν ∈ IX are called fuzzy
approximation preseparated (resp. separated)
sets if p clλR(μ) ∧ ν = μ ∧ p clλR(ν) = 0 (resp.
clλR(μ) ∧ ν = μ ∧ clλR(ν) = 0).

(2) A fuzzy set η ∈ IX is called fuzzy approxima-
tion predisconnected (resp. disconnected) set
if there exist fuzzy approximation presepa-
rated (resp. separated) sets μ, ν ∈ IX, such that
μ ∨ ν = η. A fuzzy set η is called fuzzy
approximation preconnected (resp. connected)
if it is not fuzzy approximation predisconnected
(resp. disconnected).

(3) (X, R) is called fuzzy approximation prediscon-
nected (resp. disconnected) space if there exist

fuzzy approximation preseparated (resp. sepa-
rated) sets μ, ν ∈ IX, such that μ ∨ ν = 1.
A fuzzy approximation space(X, R) is called
fuzzy approximation preconnected (resp. con-
nected) space if it is not fuzzy approximation
predisconnected (resp. disconnected) space.

Definition 4.2. Let (X, R, �) be a fuzzy ideal approx-
imation space associated with λ ∈ IX. Then,

(1) the fuzzy sets μ, ν ∈ IX are called fuzzy ideal
approximation preseparated (resp. separated)
sets if p clλ�(μ) ∧ ν = μ ∧ p clλ�(ν) = 0
(resp. clλ�(μ) ∧ ν = μ ∧ clλ�(ν) = 0).

(2) A fuzzy set η ∈ IX is called fuzzy ideal approx-
imation predisconnected (resp. disconnected)
set if there exist fuzzy ideal approximation pre-
separated (resp. separated) sets μ, ν ∈ IX, such
that μ ∨ ν = η. A fuzzy set η is called fuzzy
ideal approximation preconnected (resp. con-
nected) if it is not fuzzy ideal approximation
predisconnected (resp. disconnected).

(3) (X, R, �) is called fuzzy ideal approximation
predisconnected (resp. disconnected) space if
there exist fuzzy ideal approximation presep-
arated (resp. separated) sets μ, ν ∈ IX, such
that μ ∨ ν = 1. A fuzzy ideal approximation
space(X, R, �) is called fuzzy ideal approxima-
tion preconnected (resp. connected) space if it is
not fuzzy ideal approximation predisconnected
(resp. disconnected) space.

Remark 4.1. We have the following implications.

and hence,

Example 4.1. Let X = {a, b, c, d, e} and R a fuzzy
relation on X defined by
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R a b c d e

a 1 1 0.2 0 0
b 1 1 0.2 0 0
c 0.2 0.2 1 0 0
d 0 0 0 1 0
e 0 0 0 0 1

Suppose that λ = {0, 0, 0.4, 0.8, 0}. Then,
λR = {0, 0, 0.4, 0.8, 0}, and (λR)c = {1, 1,

0.6, 0.2, 1}. Now, for μ = {0.6, 0, 0, 0, 0},
ν = {0, 0.6, 0, 0, 0}. Then, μR = {0.6, 1, 0.2, 0, 0},
νR = {1, 0.6, 0.2, 0, 0}, and thus clλR(μ) =
{1, 1, 0.6, 0.2, 1} and clλR(ν) = {1, 1, 0.6, 0.2, 1}.
Moreover, μR = 0, νR = 0, and thus intλR(μ) = 0
and intλR(ν) = 0. Hence,

(1) μ, ν are fuzzy approximation preseparated sets
but not fuzzy approximation separated sets.

(2) Consider a fuzzy ideal I defined on X so that
η ∈ I ∀η ≤ 0.6. Then, μ ∈ I, ν ∈ I, which
means that �λ(μ) = 0 and �λ(ν) = 0, and then
clλ�(μ) = μ and clλ�(ν) = ν. Thus, clλ�(μ) ∧
ν = 0 and clλ�(ν) ∧ μ = 0, and then μ, ν are
fuzzy ideal approximation separated sets but not
fuzzy approximation separated sets.

(3) Consider a fuzzy idealIdefined onX so thatη ∈
I ∀η ≤ 0.3. Then, μ /∈ I, ν /∈ I, which implies
that �λ(μ) = �λ(ν) = {1, 1, 0.6, 0.2, 1}, and
then clλ�(μ) = clλ�(ν) = {1, 1, 0.6, 0.2, 1}.
Thus, μ, ν are not fuzzy ideal approximation
separated sets.
But, μ, ν are fuzzy approximation preclosed
sets, then �

p
λ (μ) = μ and �

p
λ (ν) = ν, and then

p clλ�(μ) = μ and p clλ�(ν) = ν. Hence, μ, ν are
fuzzy ideal approximation preseparated sets but
not fuzzy ideal approximation separated sets.

(4) Here, η = {0.6, 0, 0.6, 0, 0}, ξ = {0, 0.6, 0,

0.6, 0} are not fuzzy approximation presepa-
rated, where p clλR(η) = {1, 1, 0.6, 0.2, 1}
and p clλR(ξ) = {1, 1, 0.6, 0.6, 1} from
that ηR = {0, 0, 0.6, 0, 0} and ξR =
{0, 0, 0, 0.6, 0}, intλR(η) = {0, 0, 0.4, 0, 0}
and intλR(ξ) = {0, 0, 0, 0.6, 0}. While, η, ξ

are fuzzy ideal approximation preseparated
sets whenever I is a fuzzy ideal defined on X

so that ζ ∈ I ∀ζ ≤ 0.6. That is, �
p
λ (η) = 0

and �
p
λ (ξ) = 0, and then p clλ�(η) = η and

p clλ�(ξ) = ξ, and thus p clλ�(η) ∧ ξ = 0 and
p clλ�(ξ) ∧ η = 0.

Proposition 4.1. Let (X, R, �) be a fuzzy ideal
approximation space associated with λ ∈ IX. Then,

the following are equivalent.

(1) (X, R, �) is fuzzy ideal approximation precon-
nected.

(2) μ ∧ ν = 0, p intλ�(μ) = μ, p intλ�(ν) = ν and
μ ∨ ν = 1 imply μ = 0 or ν = 0.

(3) μ ∧ ν = 0, p clλ�(μ) = μ, p clλ�(ν) = ν and
μ ∨ ν = 1 imply μ = 0 or ν = 0.

Proof. (1) ⇒ (2): Let μ, ν ∈ IX with p intλ�(μ) = μ,
p intλ�(ν) = ν such that μ ∧ ν = 0 and μ ∨ ν = 1.
Then,
p clλ�(μ) = p clλ�(νc) = (p intλ�(ν))c = νc = μ,

p clλ�(ν) = p clλ�(μc) = (p intλ�(μ))c = μc = ν.

Hence, p clλ�(μ) ∧ ν = μ ∧ p clλ�(ν) = μ ∧ ν = 0.
That is, μ, ν are fuzzy ideal approximation presepa-
rated sets so that μ ∨ ν = 1. But (X, R, �) is fuzzy
ideal approximation preconnected implies that μ =
0 or ν = 0.

(2) ⇒ (3): , (3) ⇒ (1): Clear. �

Proposition 4.2. Let (X, R, �) be a fuzzy ideal
approximation space associated with λ ∈ IX. Then,
for μ ∈ IX, the following are equivalent.

(1) μ is fuzzy ideal approximation preconnected
set.

(2) If ν, ρ are fuzzy ideal approximation presepa-
rated sets with μ ≤ (ν ∨ ρ), then μ ∧ ν = 0
or μ ∧ ρ = 0.

(3) If ν, ρ are fuzzy ideal approximation presepa-
rated sets with μ ≤ (ν ∨ ρ), then μ ≤ ν or
μ ≤ ρ.

Proof.
(1) ⇒ (2): Let ν, ρ be fuzzy ideal approxima-

tion preseparated sets with μ ≤ (ν ∨ ρ). That is,
pclλ�(ν) ∧ ρ = pclλ�(ρ) ∧ ν = 0 so that μ ≤ (ν ∨ ρ).
Since

pclλ�(μ ∧ ν) ∧ (μ ∧ ρ) = pclλ�(μ) ∧ pclλ�(ν) ∧ (μ ∧ ρ)

= pclλ�(μ) ∧ μ ∧ pclλ�(ν) ∧ ρ = μ ∧ 0 = 0.

pclλ�(μ ∧ ρ) ∧ (μ ∧ ν) = pclλ�(μ) ∧ pclλ�(ρ) ∧ (μ ∧ ν)

= pclλ�(μ) ∧ μ ∧ pclλ�(ρ) ∧ ν = μ ∧ 0 = 0.

Then, (μ ∧ ν) and (μ ∧ ρ) are fuzzy ideal approxima-
tion preseparated sets with μ = (μ ∧ ν) ∨ (μ ∧ ρ).
But μ is fuzzy ideal approximation preconnected
means that μ ∧ ν = 0 or μ ∧ ρ = 0.
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(2) ⇒ (3): If μ ∧ ν = 0, μ ≤ (ν ∨ ρ) means that
μ = μ ∧ (ν ∨ ρ) = (μ ∧ ν) ∨ (μ ∧ ρ) = μ ∧ ρ, and
thus μ ≤ ρ. Also, if μ ∧ ρ = 0, then μ ≤ ν.

(3) ⇒ (1): Let ν, ρ be fuzzy ideal approximation
preseparated sets so that μ = ν ∨ ρ. Then, from (3),
μ ≤ ν or μ ≤ ρ. If μ ≤ ν, then

ρ = (ν ∨ ρ) ∧ ρ = μ ∧ ρ ≤ ν ∧ ρ ≤ pclλ�(ν) ∧ ρ = 0.

Also, if μ ≤ ρ, then ν = (ν ∨ ρ) ∧ ν = μ ∧ ν ≤
ρ ∧ ν ≤ pclλ�(ρ) ∧ ν = 0.

Hence, μ is fuzzy ideal approximation preconnected
set. �

Corollary 4.1. Let (X, R) be a fuzzy approximation
space associated with λ ∈ IX. Then, for μ ∈ IX, the
following are equivalent.

(1) μ is fuzzy approximation preconnected set.
(2) If ν, ρ are fuzzy approximation preseparated

sets with μ ≤ (ν ∨ ρ), then μ ∧ ν = 0
or μ ∧ ρ = 0.

(3) If ν, ρ are fuzzy approximation preseparated
sets with μ ≤ (ν ∨ ρ), then μ ≤ ν

or μ ≤ ρ.

Theorem 4.1. Let (X, R), (Y, R∗) be fuzzy approx-
imation spaces associated with λ ∈ IX, μ ∈ IY ,
respectively, � a fuzzy ideal on X, and f :
(X, R, �) → (Y, R∗) is a fuzzy mapping such that
p clλ�(f−1(ν)) ≤ f−1(p clμR∗ (ν)) ∀ν ∈ IY . Then,
f (η) ∈ IY is a fuzzy approximation preconnected set
if η is a fuzzy ideal approximation preconnected in
X.

Proof. Let ν, ρ ∈ IY be fuzzy approximation
preseparated sets with f (η) = ν ∨ ρ. That
is, p clμR∗ (ν) ∧ ρ = p clμR∗ (ρ) ∧ ν = 0. Then,
η ≤ (f−1(ν) ∨ f−1(ρ)), and from the condition of
f , we get that

p clλ�(f−1(ν)) ∧ f−1(ρ) ≤ f−1(p clμ
R∗ (ν)) ∧ f−1(ρ)

= f−1(p clμ
R∗ (ν) ∧ ρ) = f−1(0) = 0,

and in similar way, we have

p clλ�(f−1(ρ)) ∧ f−1(ν) ≤ f−1(p clμ
R∗ (ρ)) ∧ f−1(ν)

= f−1(clμ
R∗ (ρ) ∧ ν) = f−1(0) = 0.

Hence, f−1(ν) and f−1(ρ) are fuzzy ideal approxi-
mation preseparated sets in X so that η ≤ (f−1(ν) ∨
f−1(ρ)). Since η is fuzzy ideal approximation pre-
connected, then from (3) in Proposition 4.2, we get
that η ≤ f−1(ν) or η ≤ f−1(ρ), which means that

f (η) ≤ ν or f (η) ≤ ρ. Thus, from Corollary 4.1,
f (η) is fuzzy approximation preconnected in Y . �

5. Compactness in fuzzy ideal approximation
spaces

This section is devoted to the notion of fuzzy ideal
approximation compact spaces.

Definition 5.1. Let (X, R, �) be a fuzzy ideal approxi-
mation space associated with λ ∈ IX. Then, X is said
to be fuzzy regular (resp. fuzzy ideal regular ) space
if for each η ∈ IX with intλR(η) = η,

η =
∨
j∈J

{ηj : intλR(ηj) = ηj, clλR(ηj) ≤ η}.

( resp. η =
∨
j∈J

{ηj : intλR(ηj) = ηj, clλ�(ηj) ≤ η}).

It is clear that every fuzzy regular space is a fuzzy
ideal regular space. If � = {0}, then the concepts of
fuzzy regular and fuzzy ideal regular are identical.

Definition 5.2. Let (X, R, �) be a fuzzy ideal approx-
imation space associated with λ ∈ IX. Then,

(1) μ is said to be fuzzy approximation compact
(resp. fuzzy ideal approximation compact ) if
for any family {μj ∈ IX : intλR(μj) = μj, j ∈
J} with μ ≤ ∨

j∈J

μj , there exists a finite sub-

set J0 of J such that μ ≤ ∨
j∈J0

μj (resp.

μ � (
∨

j∈J0

μj) ∈ �).

(2) μ is said to be fuzzy almost approximation
compact (resp. fuzzy almost ideal approxima-
tion compact ) if for any family {μj ∈ IX :
intλR(μj) = μj, j ∈ J} with μ ≤ ∨

j∈J

μj , there

exists a finite subset J0 of J such that μ ≤∨
j∈J0

clλR(μj) (resp. μ � (
∨

j∈J0

clλ�(μj)) ∈ �).

(3) μ is said to be fuzzy nearly approxi-
mation compact (resp. fuzzy nearly ideal
approximation compact ) if for any family
{μj ∈ IX : intλR(μj) = μj, j ∈ J} with μ ≤∨
j∈J

μj , there exists a finite subset J0 of J

such that μ ≤ ∨
j∈J0

intλR(clλR(μj)) (resp. μ �

(
∨

j∈J0

intλR(clλ�(μj))) ∈ �).
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The fuzzy approximation space (X, R) (resp.
The fuzzy ideal approximation space (X, R, �))
will be called fuzzy approximation compact,
fuzzy almost approximation compact, fuzzy
nearly approximation compact (resp. fuzzy
ideal approximation compact, fuzzy almost
ideal approximation compact, fuzzy nearly
ideal approximation compact) if we replaced μ

with 1.

It is clear that:

If � = {0}, then
fuzzy approximation compact (fuzzy almost approx-
imation compact, fuzzy nearly approximation
compact) and fuzzy ideal approximation compact
(fuzzy almost ideal approximation compact, fuzzy
nearly ideal approximation compact) respectively, are
equivalent.

Here is an example for both of Definition 5.1 and
Definition 5.2.

Example 5.1. Let R be a fuzzy relation on a set X =
{a, b, c, d} defined as follows.

R a b c d

a 1 1 0 0
b 1 1 0 0
c 0 0 1 0.3
d 0 0 0.3 1

(1) Assume that λ = {1, 1, 0.6, 0.6}. Then,
λR = {1, 1, 0.6, 0.6} = λ and (λR)c = {0, 0,

0.4, 0.4} = λc.
For any νj ∈ IX with {1, 1, 0, 0} ≤ νj ≤
{1, 1, 0.6, 0.6}, we get that
intλR(νj) = (νj)R ∧ λR = νj ∧ λ = νj . That
is, for any μ ∈ IX with intλR(μ) = μ, we can
choose a family of these fuzzy sets νj such
that intλR(νj) = νj and clλR(νj) ≤ μ whenever
we choose only the fuzzy sets wj so that
{1, 1, 0.4, 0.4} ≤ wj ≤ {1, 1, 0.6, 0.6}, which
satisfy that clλR(wj) = wj . Thus, we get
for all μ ∈ IX with {1, 1, 0.4, 0.4} ≤ μ ≤
{1, 1, 0.6, 0.6}, a family of fuzzy sets wj so

that {1, 1, 0.4, 0.4} ≤ wj ≤ {1, 1, 0.6, 0.6} for
which

μ =
∨
j∈J

{wj : intλR(wj) = wj, clλR(wj) ≤ μ}.

Note that: the condition for μ is satisfied
only if μ is a special fuzzy set but not for
all μ ∈ IX. For example, μ = {1, 1, 0.2, 0.2}
with intλR(μ) = μ, there is no {νj}j∈J satisfy-
ing the condition for μ, where {1, 1, 0.4, 0.4} ≤
clλR(νj) /≤ μ for all νj with intλR(νj) = νj .

Hence, (X, R) is not fuzzy regular approxima-
tion space. Similarly, we can show that the
fuzzy ideal approximation space (X, R, �) is not
fuzzy ideal regular space whenever � = {0}.

(2) Assuming λ = {1, 0, 0, 0} and the same fuzzy
relation R on X. Then, λR = 0 and (λR)c =
1. For any family of νj ∈ IX, we get that
intλR(νj) = 0, and thus for any fuzzy set μ ∈ IX,
we get that μ ∈ IX is satisfying directly the
definition

μ =
∨
j∈J

{νj : intλR(νj) = νj, clλR(νj) ≤ μ}.

That is, (X, R) is a fuzzy regular approximation
space associated with this λ ∈ IX. Similarly,
we can show that the fuzzy ideal approximation
space (X, R, �) is a fuzzy ideal regular space
whenever � = {0}.

(3) Moreover, associated with λ = {1, 1, 0.6, 0.6}
and the same fuzzy relation R on X, we can
prove thatη = {1, 1, 0.5, 0.5} is a fuzzy approx-
imation compact set, where η ≤ ∨

j∈J

νj and η

itself is one of these fuzzy sets νj . That is, for
every fuzzy cover from these νj, j ∈ J of η,
there is a finite subcover η itself as a cover of
η. In addition, η is fuzzy ideal approximation
compact set if we restricted the fuzzy ideal � on
X to be only {0}.
The other two cases of compactness are easily
shown by choosing the fuzzy cover as the same
family of sets wj with {1, 1, 0.4, 0.4} ≤ wj ≤
{1, 1, 0.6, 0.6}.
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Theorem 5.1. Let (X, R, �) be fuzzy almost ideal
approximation compact and fuzzy ideal regular. Then,
X is a fuzzy ideal approximation compact space.
Proof. Assume a family {μj ∈ IX : intλR(μj) =
μj, j ∈ J} with 1 = ∨

j∈J

μj .

By fuzzy ideal regularity of X, then for each
intλR(μj) = μj , we have

μj =
∨

jk∈JK

{μjk
: intλR(μjk

), clλ�(μjk
) ≤ μj}.

Hence,1 = ∨
j∈J

(
∨

jk∈JK

μjk
). Since X is fuzzy almost

ideal approximation compact, then there exists a finite
index subset J0 × JK of J × J such that

1 � (
∨
j∈J0

(
∨

jk∈JK

clλ�(μjk
))) ∈ �.

Since for each j ∈ J0, we have
∨

jk∈JK

clλ�(μjk
) ≤

μj , then we get that

1 � (
∨
j∈J0

(
∨

jk∈JK

clλ�(μjk
))) ≥ 1 � (

∨
j∈J0

μj).

Therefore, 1 � (
∨

j∈J0

μj) ∈ �, and thus (X, R, �) is

fuzzy ideal approximation compact. �

Theorem 5.2. Let (X, R, �) be fuzzy nearly ideal
approximation compact and fuzzy ideal regular. Then,
X is a fuzzy nearly ideal approximation compact.
Proof. Similar to the proof of Theorem 5.1. �

Theorem 5.3. Let f : (X, R, �1) → (Y, R∗, �2) be
injective fuzzy approximation continuous mapping
between two fuzzy ideal approximation spaces asso-
ciated with λ ∈ IX, μ ∈ IY respectively and ν ∈
�1 =⇒ f (ν) ∈ �2 ∀ν ∈ IX, and η ∈ IX is a fuzzy
ideal approximation compact set. Then, f (η) is fuzzy
ideal approximation compact as well.

Proof. Let {ξj ∈ IY : intμR∗ (ξj) = ξj, j ∈ J} be a
family with f (η) ≤ ∨

j∈J

ξj .

By fuzzy approximation continuity of f ,
intλR(f−1(ξj)) = f−1(ξj) and η ≤ ∨

j∈J

f−1(ξj).

By fuzzy ideal approximation compactness of
η, there exists a finite subset J0 of J such that
η � (

∨
j∈J0

(f−1(ξj))) ∈ �1.

Since ν ∈ �1 =⇒ f (ν) ∈ �2 ∀ν ∈ IX, then f (η �
(

∨
j∈J0

(f−1(ξj)))) ∈ �2.From f is injective, thenf (η �

(
∨

j∈J0

(f−1(ξj)))) = f (η) � (
∨

j∈J0

(ξj)). Thus,

f (η) � (
∨
j∈J0

(ξj)) ∈ �2.

Hence, f (η) is fuzzy ideal approximation compact.
�

6. Conclusion

Let X be a non empty set and G ⊆ IX. Then, G is a
fuzzy grill on X ([4]) iff �(G) = {μ ∈ IX : μ /∈ G}
is a fuzzy ideal on X, and conversely; let X be a non
empty set and � ⊆ IX. Then, � is a fuzzy ideal on X

iff G(�) = {μc ∈ IX : μ ∈ �} is a fuzzy grill on
X. If we defined the fuzzy approximation separation
axioms or the fuzzy approximation connectedness,
or the fuzzy approximation compactness using the
notion of fuzzy grill, it will be the same definitions
and results as given using the notion of fuzzy ideal
from the correspondence between fuzzy ideals and
fuzzy grills.
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